Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Robust/Stochastic programming

Locating stations in a one-way electric car sharing system under demand uncertainty: In [16], we focused on a problem of locating recharging stations in one-way station based electric car sharing systems which operate under demand uncertainty. We modeled this problem as a mixed integer stochastic program and develop a Benders decomposition algorithm based on this formulation. We integrated a stabilization procedure to our algorithm and conduct a large-scale experimental study on our methods. To conduct the computational experiments, we developed a demand forecasting method allowing to generate many demand scenarios. The method was applied to real data from Manhattan taxi trips.

Bookings in the European Gas Market: Characterisation of Feasibility and Computational Complexity Results: As a consequence of the liberalisation of the European gas market in the last decades, gas trading and transport have been decoupled. At the core of this decoupling are so-called bookings and nominations. Bookings are special long-term capacity right contracts that guarantee that a specified amount of gas can be supplied or withdrawn at certain entry or exit nodes of the network. These supplies and withdrawals are nominated at the day-ahead. These bookings then need to be feasible, i.e., every nomination that complies with the given bookings can be transported. While checking the feasibility of a nomination can typically be done by solving a mixed-integer nonlinear feasibility problem, the verification of feasibility of a set of bookings is much harder. We consider the question of how to verify the feasibility of given bookings for a number of special cases. For our physics model we impose a steady-state potential-based flow model and disregard controllable network elements. We derive a characterisation of feasible bookings, which is then used to show that the problem is in coNP for the general case but can be solved in polynomial time for linear potential-based flow models. Moreover, we present a dynamic programming approach for deciding the feasibility of a booking in tree-shaped networks even for nonlinear flow models [25]. Further, in [71], we show that the feasibility of a booking also can be decided in polynomial time on single-cycle networks.

Robust bilevel programs: Bilevel optimization problems embed the optimality conditions of a sub-problem into the constraints of a decision-making process. A general question of bilevel optimization occurs where the lower-level is solved (only) to near-optimality. Solving bilevel problems under limited deviations of the lower-level variables was introduced under the term “ϵ-approximation” of the pessimistic bilevel problem. In [77] the authors define special properties and a solution method for this variant in the so-called independent case, i.e., where the lower-level feasible set is independent of the upper-level decision. In [66], we generalized the approach of Wiesemann et al. 2013, to problems with constraints involving upper- and lower-level variables in the constraints at both levels. The purpose of this generalization is to protect the upper-level feasibility against uncertainty of near-optimal solutions of the lower-level. We call this near-optimal robustness and the generalization is a near-optimal robust bilevel problem (NORBiP). NORBiP is a bilinear bilevel problem, and this makes it very hard in general. We have defined and implemented a solution algorithm for the linear linear NORBiP [66].